The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Synergistic effects of food chain dynamics and induced behavioral responses in aquatic ecosystems

Author

Summary, in English

The aim of the present study was to test the hypothesis that temporal differences in food chain composition affect lower trophic levels not only directly, by predation and grazing, but also indirectly, by inducing avoidance behavior. In a field study, the recruitment rate from the sediments to water of two algal species (Gonyostomum semen and Peridinium sp.) was higher at low than at high biomass of herbivorous zooplankton. In complementary laboratory experiments, where abiotic conditions were standardized, the presence of live, as well as dead, herbivores reduced the recruitment rate of both Gondostomum semen and Peridinium sp. These results suggest that some algal species are able to adjust their recruitment behavior in response to the likely risk of being grazed. Together with morphological adaptations (e.g., spines and large size) common among many algal species, such an induced behavioral response is an important adaptation to reduce cell mortality. As shown in this study, this behavioral response may have a profound impact on dominance and succession patterns in algal communities. The high zooplankton biomass observed during the first year of the held study was caused by failed reproduction of the dominant fish species in the lake (roach. Rutilus rutilus). Hence, food chain interactions (low predation on zooplankton, leading to high biomass of herbivorous zooplankton) may act in concert with more indirect, predator-avoidance behavior in structuring the phytoplankton community.

Publishing year

2000

Language

English

Pages

842-851

Publication/Series

Ecology

Volume

81

Issue

3

Document type

Journal article

Publisher

Ecological Society of America

Topic

  • Ecology

Status

Published

Research group

  • Aquatic Ecology

ISBN/ISSN/Other

  • ISSN: 0012-9658