The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Clinical gene therapy in hematology: Past and future

Author

Summary, in English

Gene transfer into hematopoietic cells using viral vectors has focused mostly on lymphocytes and hematopoietic stem cells (HSCs). HSCs have been considered particularly important as target cells because of their pluripotency and ability to reconstitute hematopoiesis after myeloablation and transplantation. HSCs are believed to have the ability to live a long time, perhaps a lifetime, in the recipient following bone marrow transplantation. Genetic correction of HSCs can therefore potentially last a lifetime and permanently cure hematologic disorders in which genetic deficiencies cause the pathology. Oncoretroviral vectors have been the main vectors used for HSCs because of their ability to integrate into the chromosomes of their target cells. Gene-transfer efficiency of murine HSCs is high using oncoretroviral vectors. In contrast, gene-transfer efficiency using the same viral vectors to transduce human HSCs or HSCs from large animals has been much lower. Although these difficulties may have several causes. the main reason for the low efficiency of human HSC transduction with oncoretroviral vectors is probably because of the nondividing nature of HSCs. Murine HSCs can be easily stimulated to divide in culture, whereas it is more problematic to stimulate human HSCs to divide rapidly in vitro. Because oncoretroviral vectors require dividing target cells for successful nuclear import of the preintegration complex and subsequent integration of the provirus, only the dividing fraction of the target cells can be transduced. This review focuses on gene transfer into human hematopoietic cells, particularly human HSCs. We review the clinical studies that have been reported, including the recent successful gene therapy for X-linked severe combined immunodeficiency. We discuss how the gene-transfer efficiency of human HSCs can be improved using oncoretroviral and lentiviral vectors.

Publishing year

2001

Language

English

Pages

162-169

Publication/Series

International Journal of Hematology

Volume

73

Issue

2

Document type

Journal article

Publisher

Springer

Topic

  • Hematology

Keywords

  • Gene therapy
  • Lentiviral vectors
  • Retroviral vectors
  • Hematopoietic stem cells
  • Genetic diseases

Status

Published

ISBN/ISSN/Other

  • ISSN: 0925-5710