The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Oats (Avena sativa) reduce atherogenesis in LDL-receptor-deficient mice.

Author

Summary, in English

AIM: The cholesterol-lowering properties of oats, largely ascribed to its contents of soluble fibers, beta-glucans, are well established, whereas effects on atherogenesis are less well elucidated. Oats also contains components with reported antioxidant and anti-inflammatory effects that may affect atherogenesis. In this work we examined effects of oat bran on plasma cholesterol, markers of inflammation, eNOS expression and development of atherosclerosis in LDL-receptor-deficient (LDLr(-/-)) mice. METHODS AND RESULTS: Female LDLr(-/-) mice were fed Western diet+/-oat bran. Two concentrations of oat bran (40 and 27%) were compared regarding effects on plasma lipids. There was a dose-dependent reduction of plasma cholesterol by 42 and 20% with 40 and 27% oat bran, respectively. Both concentrations also lowered plasma triglycerides (by 45 and 33%) and relative levels of plasma LDL+VLDL. The reduction of plasma lipids was accompanied by increased faecal excretion of cholesterol and bile acids. Oat bran (40%) efficiently reduced atherosclerotic lesion area in the descending aorta (-77%) and aortic root (-33%). Plasma levels of fibrinogen and soluble vascular cell adhesion molecule-1 (VCAM-1) were significantly lower, and immunofluorescence of aortic sections revealed a 75% lower expression of VCAM-1 in oat-fed mice. The expression of eNOS protein in the aortic wall was increased in mice fed oat bran. CONCLUSIONS: Oat bran supplemented to a Western diet lowers plasma cholesterol, reduces levels of some inflammatory markers, increases eNOS expression and inhibits atherosclerotic lesion development in LDLr(-/-) mice. It remains to be investigated which components in oats contribute to these effects.

Department/s

Publishing year

2010

Language

English

Pages

93-99

Publication/Series

Atherosclerosis

Volume

Jul 1

Document type

Journal article

Publisher

Elsevier

Topic

  • Cardiac and Cardiovascular Systems

Status

Published

Research group

  • Vascular Physiology
  • Cardiovascular Research - Immunity and Atherosclerosis

ISBN/ISSN/Other

  • ISSN: 1879-1484