The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Disruption of the microbial food web and inhibition of metazooplankton development in the presence of iron- and DOM-stimulated Baltic Sea cyanobacteria

Author

  • Betina Kozlowsky-Suzuki
  • Miina Karjalainen
  • Marja Koski
  • Per Carlsson
  • Willem Stolte
  • Maija Balode
  • Edna Graneli

Summary, in English

Summer N-2-fixing cyanobacterial blooms are a common feature in the Baltic Sea, and the occurrence of Nodularia spumigena toxic blooms is of particular concern. Cyanobacterial blooms can be favoured by certain conditions including high concentrations of dissolved organic matter, which may increase the availability of iron critical for N-2 fixation. Cyanobacteria may negatively affect grazers because many species produce toxins and generally lack fatty acids essential for zooplankton reproduction. In this study we investigated the effect of riverine high-molecular weight dissolved organic matter (DOM-)/iron-stimulated cyanobacteria on the development of proto- and metazooplankton, and evaluated the role of DOM in stimulating the zooplankton part of the microbial food web. A plankton community was incubated in cylinders with either nitrate (NO3) or DOM alone or combined with iron (Fe) or zooplankton >100 mu m (G). The development of proto- and metazooplankton was followed for 10 d. Trophic relationships between metazooplankton taxa and their potential food items were assessed by ordination analysis and by feeding and reproduction bottle incubations with the calanoid copepod Acartia bifflosa. Contrary to our expectations, DOM did not stimulate the microbial food web, and proto- and metazooplankton developed similarly in all treatments until the middle of the experiment. However, by the end of the experiment, the biomass of proto- and metazooplankton as well as the biomass of diatoms and dinoflagellates was greatly depressed in all DOM and NO3Fe treatments. In these treatments, cyanobacterial and bacterial biomasses were highest leading up to phosphate depletion. Plankton development seemed to be bottom-up controlled and to be affected by extracellular compound(s) produced by the dominant cyanobacteria, possibly triggered by phosphate limitation. Diatoms, dinoflagellates, protozoans and metazooplankton were instead stimulated in the NO3 and NO(3)G treatments, where cyanobacterial biomass was low. Accordingly, A. bifilosa reproduction and survival were sustained in NO3 bottles. Deleterious effects of cyanobacteria on metazooplankton were diminished in NO3 and NO(3)G tanks where other food resources were available. Overall, the results suggest that increases in the input of DOM to the Baltic Sea can potentially stimulate cyanobacterial blooms that may disrupt the microbial food web and inhibit metazooplankton development.

Publishing year

2007

Language

English

Pages

15-26

Publication/Series

Marine Ecology - Progress Series

Volume

337

Document type

Journal article

Publisher

Inter-Research

Topic

  • Ecology

Keywords

  • Acartia bifilosa
  • zooplankton
  • riverine high-molecular weight dissolved organic matter (DOM) iron
  • microbial food web
  • cyanobacteria
  • extracellular compounds

Status

Published

Research group

  • Aquatic Ecology

ISBN/ISSN/Other

  • ISSN: 1616-1599