The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Shiga toxin-induced complement-mediated hemolysis and release of complement-coated red blood cell-derived microvesicles in hemolytic uremic syndrome.

Author

Summary, in English

Shiga toxin (Stx)-producing Escherichia coli (STEC) cause hemolytic uremic syndrome (HUS). This study investigated whether Stx2 induces hemolysis and whether complement is involved in the hemolytic process. RBCs and/or RBC-derived microvesicles from patients with STEC-HUS (n = 25) were investigated for the presence of C3 and C9 by flow cytometry. Patients exhibited increased C3 deposition on RBCs compared with controls (p < 0.001), as well as high levels of C3- and C9-bearing RBC-derived microvesicles during the acute phase, which decreased after recovery. Stx2 bound to P1 (k) and P2 (k) phenotype RBCs, expressing high levels of the P(k) Ag (globotriaosylceramide), the known Stx receptor. Stx2 induced the release of hemoglobin and lactate dehydrogenase in whole blood, indicating hemolysis. Stx2-induced hemolysis was not demonstrated in the absence of plasma and was inhibited by heat inactivation, as well as by the terminal complement pathway Ab eculizumab, the purinergic P2 receptor antagonist suramin, and EDTA. In the presence of whole blood or plasma/serum, Stx2 induced the release of RBC-derived microvesicles coated with C5b-9, a process that was inhibited by EDTA, in the absence of factor B, and by purinergic P2 receptor antagonists. Thus, complement-coated RBC-derived microvesicles are elevated in HUS patients and induced in vitro by incubation of RBCs with Stx2, which also induced hemolysis. The role of complement in Stx2-mediated hemolysis was demonstrated by its occurrence only in the presence of plasma and its abrogation by heat inactivation, EDTA, and eculizumab. Complement activation on RBCs could play a role in the hemolytic process occurring during STEC-HUS.

Publishing year

2015

Language

English

Pages

2309-2318

Publication/Series

Journal of Immunology

Volume

194

Issue

5

Document type

Journal article

Publisher

American Association of Immunologists

Topic

  • Immunology in the medical area

Status

Published

Research group

  • Transfusion Medicine
  • Pediatric Nephrology

ISBN/ISSN/Other

  • ISSN: 1550-6606