The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Lysozyme-water interactions studied by sorption calorimetry

Author

Summary, in English

Hydration of hen egg white lysozyme was studied by using the method of sorption calorimetry at 25, 40, and 50degreesC. Desorption calorimetric measurements were performed at 25 and 40degreesC. The activity of water and partial molar enthalpy of mixing of water were determined as functions of water content. Hydration of lysozyme occurs in four steps: slow penetration of water into the protein-protein interface; gradual glass transition, which occurs in every protein molecule independently of other molecules; further water uptake with disaggregation of protein aggregates and formation of a monolayer of water; and accumulation of free water. The amount of bound water found in desorption experiments is 420 water molecules per lysozyme molecule. Two hysteresis loops were found in the sorption isotherm of lysozyme. The small loop is caused by the slow penetration of water molecules into the protein-protein interface at very low water contents, while the large loop is due to the slow kinetics of aggregation of protein molecules upon desorption. The phase diagram of the lysozyme-water system is presented.

Department/s

Publishing year

2004

Language

English

Pages

19036-19042

Publication/Series

The Journal of Physical Chemistry Part B

Volume

108

Issue

49

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-5207