The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Identification of a plasminogen-binding motif in PAM, a bacterial surface protein.

Author

  • AC Wistedt
  • Ulrika Ringdahl
  • W Muller-Esterl
  • Ulf Sjöbring

Summary, in English

Surface-associated plasmin(ogen) may contribute to the invasive properties of various cells. Analysis of plasmin(ogen)-binding surface proteins is therefore of interest. The N-terminal variable regions of M-like (ML) proteins from five different group A streptococcal serotypes (33, 41, 52, 53 and 56) exhibiting the plasminogen-binding phenotype were cloned and expressed in Escherichia coli. The recombinant proteins all bound plasminogen with high affinity. The binding involved the kringle domains of plasminogen and was blocked by a lysine analogue, 6-aminohexanoic acid, indicating that lysine residues in the M-like proteins participate in the interaction. Sequence analysis revealed that the proteins contain common 13-16-amino-acid tandem repeats, each with a single central lysine residue. Experiments with fusion proteins and a 30-amino-acid synthetic peptide demonstrated that these repeats harbour the major plasminogen-binding site in the ML53 protein, as well as a binding site for the tissue-type plasminogen activator. Replacement of the lysine in the first repeat with alanine reduced the plasminogen-binding capacity of the ML53 protein by 80%. The results precisely localize the binding domain in a plasminogen surface receptor, thereby providing a unique ligand for the analysis of interactions between kringles and proteins with internal kringle-binding determinants.

Topic

  • Microbiology in the medical area
  • Immunology in the medical area

Status

Published

ISBN/ISSN/Other

  • ISSN: 1365-2958