The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Influence of jet-jet interactions on the lift-off length in an optical heavy-duty DI diesel engine

Author

Summary, in English

Several investigations have reported that the lift-off length on diesel jets depends strongly on the ambient temperature. The spacing between adjacent jets is thereby expected to influence the lift-off length, as it affects the amount of hot, burned gases present between the jets. Measurements on an 8-hole nozzle in an optical diesel engine showed that the lift-off length can be transient at all times between the start and end of injection. This is attributed to varying in-cylinder temperature and especially to the presence of hot combustion products in the gases entrained into the jets. The effect of inter-jet angle on lift-off length was investigated using symmetric and asymmetric nozzle cups. Decreasing the inter-jet angle produces shorter lift-off length. The lift-off length showed a weaker dependence on the ambient temperature in the engine than predicted by an empirical expression established in a constant-volume combustion vessel. These findings indicate that experiments in such vessels may not capture all features of the conditions in engines. The lift-off length tended to be 15% shorter on the downswirl (leeward) side of the jet. A strong interaction between the effects of the inter-jet spacing and the inlet temperature on the lift-off length was found. All these effects are attributed to the presence of hot gases between the jets. (C) 2013 Elsevier Ltd. All rights reserved.

Department/s

Publishing year

2013

Language

English

Pages

311-318

Publication/Series

Fuel

Volume

112

Document type

Journal article

Publisher

Elsevier

Topic

  • Other Mechanical Engineering

Keywords

  • Lift-off length
  • Jet-jet interactions
  • Optical engine
  • Diesel
  • Sprays

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-7153