The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Viral Stimuli Trigger Exaggerated Thymic Stromal Lymphopoietin Expression by Chronic Obstructive Pulmonary Disease Epithelium: Role of Endosomal TLR3 and Cytosolic RIG-I-Like Helicases.

Author

Summary, in English

Background: Rhinovirus (RV)-induced chronic obstructive pulmonary disease (COPD) exacerbations exhibit TH(2)-like inflammation. We hypothesized that RV-infected bronchial epithelial cells (BEC) overproduce TH(2)-switching hub cytokine, thymic stromal lymphopoietin (TSLP) in COPD. Methods: Primary BEC from healthy (HBEC) and from COPD donors (COPD-BEC) were grown in 12-well plates, infected with RV16 (0.5-5 MOI) or stimulated with agonists for either toll-like receptor (TLR) 3 (dsRNA, 0.1-10 μg/ml) or RIG-I-like helicases (dsRNA-LyoVec, 0.1-10 μg/ml). Cytokine mRNA and protein were determined (RTqPCR; ELISA). Results: dsRNA dose-dependently evoked cytokine gene overproduction of TSLP, CXCL8 and TNF-α in COPD-BEC compared to HBEC. This was confirmed using RV16 infection. IFN-β induction did not differ between COPD-BEC and HBEC. Endosomal TLR3 inhibition by chloroquine dose-dependently inhibited dsRNA-induced TSLP generation and reduced generation of CXCL8, TNF-α, and IFN-β. Stimulation of cytosolic viral sensors (RIG-I-like helicases) with dsRNA-LyoVec increased production of CXCL8, TNF-α, and IFN-β, but not TSLP. Conclusions: Endosomal TLR3-stimulation, by dsRNA or RV16, induces overproduction of TSLP in COPD-BEC. dsRNA- and RV-induced overproduction of TNF-α and CXCL8 involves endosomal TLR3 and cytosolic RIG-I-like helicases and so does the generation of IFN-β in COPD-BEC. RV16 and dsRNA-induced epithelial TSLP may contribute to pathogenic effects at exacerbations and development of COPD.

Topic

  • Immunology in the medical area

Status

Published

Research group

  • Respiratory Immunopharmacology
  • Lung Biology

ISBN/ISSN/Other

  • ISSN: 1662-811X