The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Weak Self-Interactions of Globular Proteins Studied by Small-Angle X-ray Scattering and Structure-Based Modeling.

Author

Summary, in English

We investigate protein-protein interactions in solution by small-angle X-ray scattering (SAXS) and theoretical modeling. The structure factor for solutions of bovine pancreatic trypsin inhibitor (BPTI), myoglobin (Mb), and intestinal fatty acid-binding protein (IFABP) is determined from SAXS measurements at multiple concentrations, from Monte Carlo simulations with a coarse-grained structure-based interaction model, and from analytic approximate solutions of two idealized colloidal interaction models without adjustable parameters. By combining these approaches, we find that the structure factor is essentially determined by hard-core and screened electrostatic interactions. Other soft short-ranged interactions (van der Waals and solvation-related) are either individually insignificant or tend to cancel out. The structure factor is also not significantly affected by charge fluctuations. For Mb and IFABP, with a small net charge and relatively symmetric charge distribution, the structure factor is well described by a hard-sphere model. For BPTI, with a larger net charge, screened electrostatic repulsion is also important, but the asymmetry of the charge distribution reduces the repulsion from that predicted by a charged hard-sphere model with the same net charge. Such charge asymmetry may also amplify the effect of shape asymmetry on the protein-protein potential of mean force.

Publishing year

2014

Language

English

Pages

10111-10119

Publication/Series

The Journal of Physical Chemistry Part B

Volume

118

Issue

34

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Natural Sciences
  • Theoretical Chemistry
  • Physical Chemistry
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1520-5207