The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Reduction of ultraviolet light-induced DNA damage in human colon cancer cells treated with a lactoferrin-derived peptide

Author

Summary, in English

Treatment of Caco-2 cells with the peptide lactoferricin(4-14), results in reduction of the growth rate by prolongation of the S phase of the cell cycle. Lactoferricin(1-25) is formed in the gut by cleavage from lactoferrin and the bioactive amino acids are found within lactoferricin(4-14). Our hypothesis is that the reduction of the rate of S phase progression may result in increased DNA repair. To test this hypothesis, Caco-2 cells were subjected to UV light that caused DNA lesions and then the cells were grown in the absence or presence of 2.0 mu M lactoferricin(4-14). Evaluation of DNA strand breaks using the comet assay showed that lactoferricin(4-14) treatment indeed resulted in a reduction of comets showing damaged DNA. In the search for a mechanism, we have investigated the levels of several proteins involved in cell cycle regulation, DNA replication, and apoptosis using Western blot. Lactoferricin(4-14) treatment resulted in an increased expression of flap endonuclease-1 pointing to increased DNA synthesis activity. Lactoferricin(4-14) treatment decreased the expression of the proapoptotic protein B-cell lymphoma 2-associated X protein (or Bax), indicating decreased cell death. As we have found previously, lactoferricin(4-14) treatment reduced the expression of cyclin E involved in the G(1)/S transition. Immunofluorescence microscopy showed that a lower gamma-H2AX expression in lactoferricin(4-14)-treated cells, pointing to more efficient DNA repair. Thus, altogether our data show that lactoferricin(4-14) treatment has beneficial effects.

Department/s

Publishing year

2012

Language

English

Pages

5552-5560

Publication/Series

Journal of Dairy Science

Volume

95

Issue

10

Document type

Journal article

Publisher

American Dairy Science Association

Topic

  • Food Engineering
  • Zoology

Keywords

  • DNA strand break
  • DNA repair
  • comet assay
  • lactoferricin(4-14)

Status

Published

ISBN/ISSN/Other

  • ISSN: 1525-3198