The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Dynamic Isotropy in 6-DOF Kinematically Constrained Platforms by Three Elastic Nodal Joints

Author

Summary, in English

The principle of kinematic design has a wide range of applications e.g. from optical mirror mounts to parallel robots. Despite the importance of dynamic isotropy in the optimization of dynamic performance, a thorough analysis of dynamic isotropy in different kinematic arrangements has not yet been addressed in the literature. Dynamic isotropy, leading to equal eigenfrequencies, is a powerful optimization measure. In this paper, we present fully-parametric solutions for obtaining dynamic isotropy in general 3D platforms kinematically constrained by three elastic nodal joints in 6 DOFs. It is analytically shown that there exist two possible kinematic arrangements which are described by 3-2-1 and 2-2-2 kinematic node spaces. Both kinematic arrangements are studied with respect to their Jacobian formulation, Jacobian singularity and stiffness decoupling. It is proven that decoupling of stiffness matrices and accordingly dynamic isotropy for both kinematic arrangements are possible. Subsequently, conditions concerning geometry, stiffness and inertia in order to obtain dynamic isotropy are parametrically established. Finally, it is numerically demonstrated that the presented formulation is general enough even for being directly used, as a novel and efficient approach, in order to design dynamically isotropic 6-6 Gough–Stewart platforms (6-6 hexapods).

Publishing year

2016

Language

English

Pages

342-358

Publication/Series

Precision Engineering

Volume

45

Document type

Journal article

Publisher

Elsevier

Topic

  • Applied Mechanics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0141-6359