The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Characterization of two recombinant PDE3 (cGMP-inhibited cyclic nucleotide phosphodiesterase) isoforms, RcGIP1 and HcGIP2, expressed in NIH 3006 murine fibroblasts and Sf9 insect cells

Author

  • Marie-Josephe Leroy
  • Eva Degerman
  • Masato Taira
  • Taku Murata
  • Lu Hua Wang
  • Matthew A. Movsesian
  • Elisabetta Meacci
  • Vincent C. Manganiello

Summary, in English

cDNAs encoding PDE3 [cGMP-inhibited cyclic nucleotide phosphodiesterase (cGI PDE)] isoforms, cGIP1 and cGIP2, have been cloned from rat (R) and human (H) cDNA libraries. The deduced amino acid sequences of RcGIP1 and HcGIP2 are very similar in their conserved catalytic domains but differ in their N-terminal regulatory domains [Meacci, E., et al. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 3721-3725; Taira, M., et al. (1993) J. Biol. Chem. 268, 18573-18579]. cDNAs encoding both rat adipocyte RcGIP1 and human myocardial HcGIP2 (full-length forms and truncated forms lacking much of the putative N-terminal domain) were expressed in NIH 3006 fibroblasts and in Sf9 insect cells. The recombinant proteins exhibited the expected subunit molecular mass, immunologic reactivities, and characteristics of native membrane-associated forms of the enzymes, e.g., high affinity for cAMP (Km), sensitivity to the selective cGI PDE inhibitors OPC 3689 and OPC 3911 and to cGMP. The full-length recombinants were predominantly particulate, whereas the truncated HcGIP2 forms were cytosolic suggesting that N-terminal domains contain structural determinants important for membrane association. Both fibroblast RcGIP1 and authentic adipocyte cGI PDE were phosphorylated in vitro by cAMP-dependent protein kinase; tryptic [32P]peptides released from rat adipocyte 32P-cGI PDE and 32P-RcGIP1 exhibited identical electrophoretic profiles suggesting that the same peptides are phosphorylated in both.

Publishing year

1996

Language

English

Pages

10194-10202

Publication/Series

Biochemistry

Volume

35

Issue

31

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Biochemistry and Molecular Biology

Status

Published

Research group

  • Insulin Signal Transduction

ISBN/ISSN/Other

  • ISSN: 0006-2960