The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Affinity adhesion of carbohydrate particles and yeast cells to boronate-containing polymer brushes grafted onto siliceous supports

Author

Summary, in English

Cross-linked agarose particles (Sepharose CL-6B) and baker's yeast cells were found to adhere to siliceous supports end-grafted with boronate-containing copolymers (BCCs) of N,N-dimethylacrylamide at pH >= 7.5, due to boronate interactions with surface carbohydrates of the particles and the cells. These interactions were registered both on macroscopic and on molecular levels: the BCCs spontaneously adsorbed on the agarose gel at pH >= 7.5, with adsorption increasing with pH. Agarose particles and yeast cells stained with Procion Red HE-3B formed stable, monolayer-like structures at pH 8.0, whereas at pH 7.0-7.8 the structures on the copolymer-grafted supports were less stable and more random. At pH 9.0, 50% saturation of the surface with adhering cells was attained in 2 min. Stained cells formed denser and more stable layers on the copolymer-grafted supports than they did on supports modified with self-assembled organosilane layers derivatized with low-molecular-weight boronate, presumably due to a higher reactivity of the grafted BCCs. Quantitative detachment of adhered particles and cells could be achieved by addition of 20 mm fructose - a strong competitor for binding to boronates - at pH 7.0-9.0. Regeneration of the grafted supports allowed several sequential adhesion and detachment cycles with stained yeast cells. Affinity adhesion of micron-sized carbohydrate particles to boronate-containing polymer brushes fixed on solid supports is discussed as a possible model system suggesting a new approach to isolation and separation of living cells.

Department/s

  • Biotechnology
  • Department of Food Technology, Engineering and Nutrition

Publishing year

2006

Language

English

Pages

7204-7214

Publication/Series

Chemistry: A European Journal

Volume

12

Issue

27

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Food Engineering
  • Industrial Biotechnology

Keywords

  • oligosaccharides
  • chemisorption
  • molecular recognition
  • cell adhesion
  • boronic acid

Status

Published

ISBN/ISSN/Other

  • ISSN: 1521-3765