The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Flunarizine improves the survival of grafted dopaminergic neurons

Author

Summary, in English

Embryonic nigral grafts can survive, reinnervate the striatum and reverse functional deficits in both experimental and clinical Parkinsonism. A major drawback is that only around 10% of the implanted dopaminergic neurons survive. The underlying mechanisms leading to this 90% cell death are not fully understood, but oxidative stress and a substantial loss of neurotrophic support are likely to be involved. Hypoxia and mechanical trauma, which are unavoidable during tissue preparation, may be a trigger for cell death. Recent studies have provided evidence that the type of cell death occurring is, to a large extent, apoptotic. Flunarizine is an antagonist of L-, T- and N-type calcium channels, which permits calcium entry into cells via a voltage-dependent mechanism. Flunarizine has been shown to protect neurons against death induced by serum deprivation, nerve growth factor deprivation, oxidative stress, axotomy and ischemia. This study was designed to investigate whether flunarizine can protect grafted embryonic dopaminergic neurons from death when implanted in a rat model of Parkinson's disease. Addition of 1 microM flunarizine inhibited cell death in a suspension of cells derived from the rat's ventral mesencephalon and when such a treated suspension was injected into the neostriatum there was a 2.6-fold greater number of surviving dopaminergic neurons, a doubling of the graft volume and a doubling of the volume of the host neostriatum innervated by dopaminergic fibers from the graft, compared with suspensions not exposed to flunarizine. Furthermore, rats injected with cells that had been exposed to flunarizine displayed a greater recovery of function in the amphetamine-induced rotation test.

Publishing year

1999

Language

English

Pages

17-20

Publication/Series

Neuroscience

Volume

94

Issue

1

Document type

Journal article (letter)

Publisher

Elsevier

Topic

  • Neurosciences

Keywords

  • Parkinson’s disease
  • voltage-dependent calcium channels
  • apoptosis
  • calcium
  • oxidative stress
  • rats

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-7544