The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Water activity dependence of lipase catalysis in organic media explains successful transesterification reactions

Author

Summary, in English

The water activity dependence of lipase kinetics in organic media was evaluated using lipases from Rhizopus oryzae and Candida rugosa immobilised on polypropene EP-100. The conversion studied was the transesterification of ethyl decanoate to hexyl decanoate with hydrolysis to decanoic acid as competing reaction. The reactions were carried out at controlled water activity in diisopropyl ether. Substrate inhibition was observed at hexanol concentrations of 100 mM or higher. The Rhizopus lipase expressed the highest activity and the best selectivity for transesterification at the lowest water activity (a(w) = 0.06). The Candida lipase expressed the highest transesterification/hydrolysis ratio at a(w) = 0.11 and the highest total activity at a(w) = 0.53. Several glycosidases previously tested under conditions similar to those used here expressed both maximal total activity and the best selectivity at water activities close to 1.0. The water activity dependence of the lipases is thus fundamentally different from that of glycosidases and it is a major part of the reason why lipases are more suited for transferase-type reactions than the glycosidases. (C) 2002 Elsevier Science Inc. All rights reserved.

Publishing year

2002

Language

English

Pages

1024-1029

Publication/Series

Enzyme and Microbial Technology

Volume

31

Issue

7

Document type

Journal article

Publisher

Elsevier

Topic

  • Industrial Biotechnology

Keywords

  • lipase catalysis
  • hydrolases
  • transesterification
  • water activity

Status

Published

ISBN/ISSN/Other

  • ISSN: 0141-0229