The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Chapter 28 future perspective in peripheral nerve reconstruction.

Author

Summary, in English

Nerve injuries induce severe disability and suffering for patients. Profound alterations in nerve trunks, neurons, and the central nervous system are induced rapidly after injury. This includes activation of intracellular signal transduction mechanisms aiming at the transfer of the cells into a regenerative state through the induction of the appropriate gene programs. The understanding of the neurobiological mechanisms that occur after injury can be used to design modern strategies for reconstruction after nerve injuries. Signal transduction mechanisms for instance may be targets for pharmacological intervention to stimulate nerve regeneration. Nerve injuries, particularly where there is a defect between the severed nerve trunks like in brachial plexus lesions, remain a challenge for the surgeon. Reconstruction of nerve injuries with a defect requires utilization of graft material, which can be of various designs. Application of autologous nerve grafts and use of nerve transfers are the most common clinical solutions to overcome problems with nerve defects. In this chapter we discuss the future perspective of nerve reconstruction with focus on signal transduction mechanisms and new avenues to bridge nerve defects using nanomodified graft surfaces.

Publishing year

2009

Language

English

Pages

507-530

Publication/Series

International Review of Neurobiology

Volume

87

Document type

Journal article

Publisher

Elsevier

Topic

  • Surgery

Status

Published

Research group

  • Hand Surgery, Malmö

ISBN/ISSN/Other

  • ISSN: 0074-7742