The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Experimental evidence for evaporation/condensation nonuniform flow in a horizontal aerosol generator

Author

  • T M Damour
  • S H Ehrman
  • Martin Karlsson
  • Lisa Karlsson
  • Knut Deppert

Summary, in English

The formation of deposition patterns in the cooling zone during operation of a horizontal evaporation/condensation nanoparticle generator was studied to obtain information about flow conditions during particle formation. Quartz reactor tubes were used together with a simple light attenuation measurement to characterize deposition as a function of axial location. Results for the onset and pattern of deposition for four different metals-indium, gallium, silver, and lead-were obtained, and size distributions for indium and gallium particle nanoparticles at different temperatures were measured. Distinct deposition bands could be observed resulting from vapor deposition, nanioparticle deposition, or a combination of both. The location or the bands varied with metal and evaporation temperature. Experimentally observed fluctuations in temperature, bimodal size distributions obtained at the highest furnace temperatures, as well as asymmetric deposition patterns suggested the How in the cooling portion of the generator is nonuniform, possibly as a result of buoyancy. These results are important for the design of nanoparticle generation systems, in that horizontal evaporation/condensation generators are often chosen on the basis of assumed simplicity with respect to flow, and this may not always be the case.

Publishing year

2005

Language

English

Pages

444-451

Publication/Series

Aerosol Science and Technology

Volume

39

Issue

5

Document type

Journal article

Publisher

Taylor & Francis

Topic

  • Physical Chemistry

Status

Published

ISBN/ISSN/Other

  • ISSN: 1521-7388