The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Quantitative 3D imaging of scattering media using structured illumination and computed tomography

Author

Summary, in English

An imaging technique capable of measuring the extinction coefficient in 3D is presented and demonstrated on various scattering media. The approach is able to suppress unwanted effects due to both multiple scattering and light extinction, which, in turbid situations, seriously hampers the performance of conventional imaging techniques. The main concept consists in illuminating the sample of interest with a light source that is spatially modulated in both the vertical and horizontal direction and to measure, using Structured Illumination, the correct transmission in 2D at several viewing angles. The sample is then reconstructed in 3D by means of a standard Computed Tomography algorithm. To create the adequate illumination, a novel "crossed" structured illumination approach is implemented. In this article, the accuracy and limitation of the method is first evaluated by probing several homogeneous milk solutions at various levels of turbidity. The unique possibility of visualizing an object hidden within such solutions is also demonstrated. Finally the method is applied on two different inhomogeneous scattering spray systems; one transient and one quasi-steady state. (C) 2012 Optical Society of America

Department/s

Publishing year

2012

Language

English

Pages

14437-14450

Publication/Series

Optics Express

Volume

20

Issue

13

Document type

Journal article

Publisher

Optical Society of America

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1094-4087