The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Cell Therapeutics in Parkinson's Disease.

Author

Summary, in English

The main pathology underlying motor symptoms in Parkinson's disease (PD) is a rather selective degeneration of nigrostriatal dopamine (DA) neurons. Intrastriatal transplantation of immature DA neurons, which replace those neurons that have died, leads to functional restoration in animal models of PD. Here we describe how far the clinical translation of the DA neuron replacement strategy has advanced. We briefly summarize the lessons learned from the early clinical trials with grafts of human fetal mesencephalic tissue, and discuss recent findings suggesting susceptibility of these grafts to the disease process long-term after implantation. Mechanisms underlying graft-induced dyskinesias, which constitute the only significant adverse event observed after neural transplantation, and how they should be prevented and treated are described. We summarize the attempts to generate DA neurons from stem cells of various sources and patient-specific DA neurons from fully differentiated somatic cells, with particular emphasis on the requirements of these cells to be useful in the clinical setting. The rationale for the new clinical trial with transplantation of fetal mesencephalic tissue is described. Finally, we discuss the scientific and clinical advancements that will be necessary to develop a competitive cell therapy for PD patients.

Topic

  • Neurosciences
  • Neurology

Status

Published

Research group

  • Neurobiology

ISBN/ISSN/Other

  • ISSN: 1878-7479