The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Effects of hydrogen peroxide on the guinea-pig tracheobronchial mucosa in vivo

Author

Summary, in English

Lumenal entry of plasma (mucosal exudation) is a key feature of airway inflammation. In airways challenged with histamine-type mediators and allergen the mucosal exudation response occurs without causing epithelial derangement and without increased airway absorption. In contrast, reactive oxygen metabolites may cause mucosal damage. In this study, involving guinea-pig airways, we have examined effects of H2O2 on airway exudation and absorption in vivo. Vehicle or H2O2 (0.1 and 0.5 M) was superfused onto the tracheobronchial mucosal surface through an oro-tracheal catheter. 125I-albumin, given intravenously, was determined in tracheobronchial tissue and in lavage fluids 10 min after challenge as an index of mucosal exudation of plasma. The tracheobronchial mucosa was also examined by scanning electron microscopy. In separate animals, 99mTc-DTPA was superfused 20 min after vehicle or H2O2 (0.1 and 0.5 M) had been given. A gamma camera determined the disappearance rate of 99mTc-DTPA from the airways as an index of airway absorption. The high dose of H2O2 (0.5 M) produced epithelial damage, increased the absorption of 99mTc-DTPA (P < 0.001), and increased the exudation of plasma (P < 0.001). Notably, it appeared that all extravasated plasma had entered the airway lumen within 10 min. These data demonstrate that H2O2 differs from exudative autacoids such as histamine by causing both epithelial damage and plasma exudation responses. These data also agree with the view that the epithelial lining determines the rate of absorption and is responsible for the valve-like function that allows lumenal entry of extravasated bulk plasma without any increased inward perviousness.

Publishing year

1999

Language

English

Pages

415-420

Publication/Series

Acta Physiologica Scandinavica

Volume

165

Issue

4

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Medicinal Chemistry
  • Radiology, Nuclear Medicine and Medical Imaging
  • Immunology in the medical area
  • Otorhinolaryngology
  • Pharmacology and Toxicology

Keywords

  • inflammation
  • absorption
  • airway
  • plasma exudation
  • ultrastructure

Status

Published

Research group

  • Airway Inflammation and Immunology
  • Clinical Physiology, Malmö

ISBN/ISSN/Other

  • ISSN: 0001-6772