The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Methylation and expression analyses of Pallister-Killian syndrome reveal partial dosage compensation of tetrasomy 12p and hypomethylation of gene-poor regions on 12p.

Author

Summary, in English

To ascertain the epigenomic features, i.e., the methylation, non-coding RNA, and gene expression patterns, associated with gain of i(12p) in Pallister-Killian syndrome (PKS), we investigated single cell clones, harboring either disomy 12 or tetrasomy 12p, from a patient with PKS. The i(12p)-positive cells displayed a characteristic expression and methylation signature. Of all the genes on 12p, 13% were overexpressed, including the ATN1, COPS7A, and NECAP1 genes in 12p13.31, a region previously implicated in PKS. However, the median expression fold change (1.3) on 12p was lower than expected by tetrasomy 12p. Thus, partial dosage compensation occurs in cells with i(12p). The majority (89%) of the significantly deregulated genes were not situated on 12p, indicating that global perturbation of gene expression is a key pathogenetic event in PKS. Three genes-ATP6V1G1 in 9q32, GMPS in 3q25.31, and TBX5 in 12q24.21-exhibited concomitant hypermethylation and decreased expression. The i(12p)-positive cells displayed global hypomethylation of gene-poor regions on 12p, a footprint previously associated with constitutional and acquired gains of whole chromosomes as well as with X-chromosome inactivation in females. We hypothesize that this non-genic hypomethylation is associated with chromatin processing that facilitates cellular adaptation to excess genetic material.

Publishing year

2016-02-18

Language

English

Pages

194-204

Publication/Series

Epigenetics

Volume

11

Issue

3

Document type

Journal article

Publisher

Landes Bioscience

Topic

  • Medical Genetics

Status

Published

ISBN/ISSN/Other

  • ISSN: 1559-2294