The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

On Computational Heat Transfer in Industrial Applications

Author

Summary, in English

Industrial energy systems involve many components where fluid flow, heat and mass transfer are the important transport processes. For design and development as well as investigation of innovative ideas, computational methods are of vital importance. Since the early pioneering works (by, e.g., the Spalding group) in the 1960s and 1970s, the development has been tremendous and nowadays CFD (computational fluid dynamics) is an established methodology. During the same time period computer capacities in addition have been brought extensively forward. Although still many topics need further development, applications to industrial problems are constantly increasing. In this paper examples of computational heat transfer, fluid flow and related transport phenmena applied to plate heat exchangers (PHEs), gas turbine heat transfer, and fuel cells are highlighted.

Department/s

Publishing year

2014

Language

English

Pages

003-21

Publication/Series

Proceedings of the ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology Volume 3: Gas Turbine Heat Transfer; Transport Phenomena in Materials Processing and Manufacturing; Heat Transfer in Electronic Equipment

Volume

3

Document type

Conference paper

Publisher

American Society Of Mechanical Engineers (ASME)

Topic

  • Energy Engineering

Conference name

ASME Summer Heat Transfer Conference (SHTC)

Conference date

2013-07-14 - 2013-07-19

Status

Published

ISBN/ISSN/Other

  • ISBN: 978-0-7918-5549-2