The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression.

Author

  • Holger Beckmann
  • Lars Hering
  • Miriam Henze
  • Almut Kelber
  • Paul A Stevenson
  • Georg Mayer

Summary, in English

Onychophorans typically possess a pair of simple eyes, inherited from the last common ancestor of Panarthropoda (Onychophora + Tardigrada + Arthropoda). These visual organs are thought to be homologous to the arthropod median ocelli, whereas the compound eyes most likely evolved in the arthropod lineage. To gain insights into the ancestral function and evolution of the visual system in panarthropods, we investigated phototactic behaviour, opsin gene expression and the spectral sensitivity of the eyes in two representative species of Onychophora: Euperipatoides rowelli (Peripatopsidae), and Principapillatus hitoyensis (Peripatidae). Our behavioural analyses, in conjunction with previous data, demonstrate that both species exhibit photonegative responses to wavelengths ranging from ultraviolet to green light (370-530 nm), while electroretinograms reveal that the onychophoran eye is maximally sensitive to blue light (peak sensitivity ~480 nm). Template fits to the obtained sensitivities suggest that the onychophoran eye is monochromatic. To clarify on which type of opsin the single visual pigment is based, we localised the corresponding mRNA in the onychophoran eye and brain using in situ hybridization. Our data show that the r-opsin gene (onychopsin) is expressed exclusively in the photoreceptor cells of the eye, whereas the c-opsin mRNA is confined to optic ganglion cells and the brain. Together, our findings suggest that the onychopsin is involved in vision, whereas the c-opsin might have a photoreceptive, non-visual function in onychophorans.

Publishing year

2015

Language

English

Pages

915-922

Publication/Series

Journal of Experimental Biology

Volume

218

Issue

6

Document type

Journal article

Publisher

The Company of Biologists Ltd

Topic

  • Zoology

Status

Published

Research group

  • Lund Vision Group

ISBN/ISSN/Other

  • ISSN: 1477-9145