The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Measurements of Kinematic Properties of the Cervical Spine Using Magnetic Resonance Imaging

Author

Summary, in English

This paper presents kinematic data on the cervical and upper thoracic spine, based on measurements made on 20 Scandinavian healthy, female volunteers, aged 22-58 years (mean age 40.4). The aim was to provide anatomical in vivo data, primarily intended as data for biomechanical modelling of the upper spine. Together with the measurements of standard anthropometric body dimensions, magnetic resonance imaging (MRI) was used to capture the inner anatomy for each subject. A rigid linkage system is described for the vertebrae C1 –Tvi, with one link per vertebra. Measurements include link lengths, link rotations, and antero-posterior endpoints of the spinous process. Furthermore, correlation coefficients are calculated between link lengths and anthropometric measurements. Also presented are regression equations for each link length, with stature as a predictor. Using additional images of lower accuracy, a sub-study (N=15) investigated possible differences in link length and link rotation between non-flexion and maximum-flexion of the neck. The differences in link lengths were significant (p>0.05) for only 1 of 16 measured links (Cii-Tx). Regarding link rotation, differences were significant for 4 links (Cv–T1). Finally, the precision of the results was evaluated using two methods: by using a phantom for determining the geometrical uncertainties caused by the scanner; and by comparing results between two repeated measurement rounds. The phantom test revealed that the pixel resolution and magnetic field inhomogenities had only a minor influence on the results. The comparisons of repeated measurements revealed a significant difference for the links Ci and Cii, indicating that the landmarks for determining the occipital and Ci/Cii joints were the most difficult to identify on the images.

Topic

  • Radiology, Nuclear Medicine and Medical Imaging

Keywords

  • cervical spine
  • MRI
  • kinematics
  • anthropometry
  • biomechanics
  • link length
  • link rotation

Status

Published