The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

MHC class I typing in a songbird with numerous loci and high polymorphism using motif-specific PCR and DGGE

Author

Summary, in English

The major histocompatibility complex (MHC) has a central role in the specific immune defence of vertebrates. Exon 3 of MHC class I genes encodes the domain that binds and presents peptides from pathogens that trigger immune reactions. Here we develop a fast population screening method for detecting genetic variation in the MHC class I genes of birds. We found evidence of at least 15 exon 3 sequences in the investigated great reed warbler individual. The organisation of the great reed warbler MHC class I genes suggested that a locus-specific screening protocol is impractical due to the high similarity between alleles across loci, including the introns flanking exon 3. Therefore, we used motif-specific PCR to amplify two subsets of alleles ( exon 3 sequences) that were separated with by DGGE. The motif-specific primers amplify a substantial proportion of the transcribed class I alleles (2-12 alleles per individual) from as many as six class I loci. Although not exhaustive, this gives a reliable estimate of the class I variation. The method is highly repeatable and more sensitive in detecting genetic variation than the RFLP method. The motif-specific primers also allow us to avoid screening pseudogenes. In our study population of great reed warblers, we found a high level of genetic variation in MHC class I, and no less than 234 DGGE genotypes were detected among 248 screened individuals.

Publishing year

2004

Language

English

Pages

534-542

Publication/Series

Heredity

Volume

92

Issue

6

Document type

Journal article

Publisher

Macmillan

Topic

  • Biological Sciences

Status

Published

Research group

  • Molecular Ecology and Evolution Lab

ISBN/ISSN/Other

  • ISSN: 1365-2540