The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

High resolution imaging of flameless and distributed turbulent combustion

Author

Summary, in English

Planar laser-induced fluorescence (PLIF) and Rayleigh scattering measurements were used for the study of turbulence/combustion interactions in distributed reaction regimes including flameless or MILD combustion. A novel laboratory scale burner (Distributed and Flameless Combustion Burner - DFCB) was used to reach uniquely high Karlovitz numbers, presently reported up to 14,400. It consists of a highly turbulent piloted high speed jet burner with a vitiated coflow. Six cases are reported whereas two of them (leaner cases) led to an invisible reacting zone, though still emitting light in the UV and near infrared range. Simultaneous OH/CH(2)O PLIF image with 50 mu m spatial resolution were achieved to capture the variation of intermediate species in the reaction layer. When complemented with temperature images obtained by Rayleigh scattering measurement, it provided insights of the reaction front structures as well as measures of the flame brush thicknesses. In particular, variations in the jet velocity highlighted the influence of turbulent mixing (hence turbulence/chemistry interaction) on the flame structures as depicted by the formation of relatively large pools of CH(2)O. Further, variations in the jet stoichiometry impacted on the reaction zone visibility but only marginally on the intensity and moderately on the overall shape of the OH and CH(2)O signals. (C) 2011 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Publishing year

2012

Language

English

Pages

306-316

Publication/Series

Combustion and Flame

Volume

159

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Atom and Molecular Physics and Optics

Keywords

  • Flameless combustion
  • Distributed reaction regime
  • Turbulence/chemistry
  • interaction
  • Planar laser-induced fluorescence
  • Rayleigh scattering

Status

Published

ISBN/ISSN/Other

  • ISSN: 0010-2180