The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Application of advanced laser diagnostics for the investigation of the ionization sensor signal in a combustion bomb

Author

  • Axel Franke
  • W Koban
  • Jimmy Olofsson
  • C Schulz
  • W Bessler
  • R Reinmann
  • A Larsson
  • Marcus Aldén

Summary, in English

The ionization sensor is an electrical probe for diagnostics in internal combustion engines. Laser-induced fluorescence (LIF) imaging of fuel, hydroxyl (OH), and nitric oxide (NO) distributions has been employed to extend our knowledge about the governing processes leading to its signal. By monitoring the flame propagation in quiescent and turbulent mixtures, the cycle-to-cycle variations in the early sensor signal was attributed to the stochastic contact between flame front and electrodes. An analysis of the relationship between gas temperature and sensor current in the post-flame gas suggests a dominant role of alkali traces in the ionization process at the conditions under study. Significant cooling of the burned gas in the vicinity of the electrodes was observed in quiescent mixtures. Imaging of the post-flame gas in turbulent combustion revealed moving structures with varying NO and OH concentrations, which were identified as sources of variation in the sensor current.

Department/s

Publishing year

2005

Language

English

Pages

1135-1142

Publication/Series

Applied Physics B

Volume

81

Issue

8

Document type

Journal article

Publisher

Springer

Topic

  • Atom and Molecular Physics and Optics

Status

Published

ISBN/ISSN/Other

  • ISSN: 0946-2171