The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Phosphorus in soil treatment systems : accumulation and mobility

Author

  • David Eveborn
  • Jon Petter Gustafsson
  • Elin Elmefors
  • Lin Yu
  • Ann-Kristin Eriksson
  • Emelie Ljung
  • Gunno Renman

Summary, in English

Septic tanks with subsequent soil treatment systems (STS) are a common treatment technique for domestic wastewater in rural areas. Phosphorus (P) leakage from such systems may pose a risk to water quality (especially if they are located relatively close to surface waters). In this study, six STS in Sweden (11-28 years old) were examined. Samples taken from the unsaturated subsoil beneath the distribution pipes were investigated by means of batch and column experiments, and accumulated phosphorus were characterized through X-ray absorption near edge structure (XANES) analysis. At all sites the wastewater had clearly influenced the soil. This was observed through decreased pH, increased amounts of oxalate extractable metals and at some sites altered P sorption properties. The amount of accumulated P in the STS were found to be between 0.32 and 0.87 kg m(-3), which in most cases was just a fraction of the estimated P load (<30%). Column studies revealed that high P concentrations (up to 6 mg L(-1)) were leached from the material when deionized water was applied. However, the response to deionized water varied between the sites. As evidenced by XANES analysis, aluminium phosphates or P adsorbed to aluminium (hydr)oxides, as well as organically bound P, were important sinks for P. Generally soils with a high content of oxalate-extractable Al were also less vulnerable to P leakage.

Publishing year

2014

Language

English

Pages

42-52

Publication/Series

Water Research

Volume

64

Document type

Journal article

Publisher

Elsevier

Topic

  • Earth and Related Environmental Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1879-2448