The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Solute transport dynamics by high-resolution dye tracer experiments - Image analysis and time moments

Author

Summary, in English

Accurate measurements of solute concentration are needed to conduct studies of solute transport process in unsaturated soil. In this paper we present a method of obtaining accurate measurements in and space using dye infiltration and image analysis. The soil color was related to the dye concentration in the soil (C-s) using 74 small calibration samples. The overall root mean square error (RMSE) 0.057 g dm(-3), however, for C-s < 0.75 g dm(-3), the RMSE was only 0.032 g dm(-3). Variability of the concentration estimates at the pixel scale could be reduced by using an average filter. We used the calibration relationship during four infiltration experiments in a 0.95 by 0.975 m large Plexiglas Hele-Shaw cell to calculate dye concentration patterns. Using the first and second order time moments, the dispersivity lambda was calculated for nine different artificial column widths, from 0.0014 (local-scale) to 0.72 m (meso-scale). The horizontally averaged lambda proved to be identical for column widths from 0.0014 to 0.045 m. For larger scales, lambda gradually increased. We noticed that the two experiments with higher flow (1 and 2) and the two experiments with lower flow (3 and 4) showed an almost identical variation of meso-scale lambda with depth. We concluded that above a specific critical value of theta (similar to 0.22 m(3) m(-3)), solute mixing is enhanced, leading to a lower lambda, and that solute transport can be described as a convective-dispersive process. When theta is lower than this critical level, part of the porosity is deactivated and mixing between individual stream tubes decreases, which implies that transport then occurs as a stochastic-convective process.

Publishing year

2005

Language

English

Pages

856-865

Publication/Series

Vadose Zone Journal

Volume

4

Issue

3

Document type

Journal article

Publisher

Soil Science Society of America

Topic

  • Water Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1539-1663