The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

A Note on the Kelvin Effect in 100Cr6 Steel with Application to Identification of the Elastoplastic Limit

Author

Summary, in English

Experimental and analytical results are presented regarding the temperature evolution in 100Cr6 steel under uniaxial loading. Differently heat-treated conditions of the material are studied at different strain rates. In the annealed state, the materials exhibits a pronounced initial yield stress as it passes from the elastic region to the plastic through discontinuous yielding. In contrast, the quenched and tempered material yields continuously. The focus

of the paper is on the temperature decrease during elastic deformation that precedes the more pronounced heating due to inelastic dissipation once the elastoplastic limit stress is surpassed. The applicability of the maximum temperature decrease in the elastic regime as a replacement for the commonly used 0.2%-strain measure to define the elastoplastic limit is discussed. For 100Cr6 steel, the 0.2%-strain measure is found, in some cases, to overestimate the initial yield stress by 50 MPa. The drop in temperature corresponding to the shift from elastic to inelastic material behavior is experimentally determined and compared to predictions by the Kelvin formula which in the current study give a maximum 50% error.

Department/s

Publishing year

2012

Language

English

Publication/Series

ISRN Thermodynamics

Volume

2012

Document type

Journal article

Publisher

ISRN - International Scholarly Research Network

Topic

  • Mechanical Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 2090-5203