The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Carbon Fiber Composite Materials in Modern Day Automotive Production Lines – A Case Study

Author

Summary, in English

New and innovative production equipment can be developed by introducing lightweight materials in modern day automotive industry production lines. The properties of these new materials are expected to result in improved ergonomics, energy savings, increased flexibility and more robust equipment, which in the end will result in enhanced productivity. Carbon composite materials are one such alternative that has excellent material properties. These properties are well documented, and the market for carbon composite materials is growing in many areas such as commercial aircrafts, sporting goods and wind turbines. However, when studying the use of carbon composite materials for production equipment in the automotive industry, it was found that there were few, if any, such examples.



This paper focuses on innovative ways of making carbon composite materials available for designing automotive industry production equipment by introducing a design and material concept that combines flexibility, relatively low costs and high functionality. By reducing the weight by 60%, it was obvious that the operators were very positive to the new design. But just as important as the improvement of the ergonomic feature, the combination of low weight and material properties resulted in a more robust design and a more stable process of operation. The two main designs (two versions of the steel-based design were constructed) were developed sequentially, making it difficult to compare development costs since knowledge migrated from one project to the next. In this study, the gripper was manufactured in both carbon composite material and steel. The different designs were compared with reference to design costs, functionality, robustness, product costs and ergonomics. The study clearly shows that the composite material represents a favorable alternative to conventional materials, as the system combines superior properties without significantly increasing the cost of the equipment. This paper describes the approach in detail.

Publishing year

2013

Language

English

Pages

02-037

Publication/Series

Proceedings of the International Mechanical Engineering Congress & Exposition - IMECE'13

Volume

2A

Document type

Conference paper

Publisher

American Society Of Mechanical Engineers (ASME)

Topic

  • Production Engineering, Human Work Science and Ergonomics

Keywords

  • Machine Design
  • Maskinkonstruktion

Conference name

International Mechanical Engineering Congress & Exposition - IMECE'13

Conference date

2013-11-15 - 2013-11-21

Status

Published

ISBN/ISSN/Other

  • ISBN: 978-0-7918-5618-5