The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Modeling the anaerobic digestion of cane-molasses vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater.

Author

  • Ernesto L Barrera
  • Henri Spanjers
  • Kimberly Solon
  • Youri Amerlinck
  • Ingmar Nopens
  • Jo Dewulf

Summary, in English

This research presents the modeling of the anaerobic digestion of cane-molasses vinasse, hereby extending the Anaerobic Digestion Model No. 1 with sulfate reduction for a very high strength and sulfate rich wastewater. Based on a sensitivity analysis, four parameters of the original ADM1 and all sulfate reduction parameters were calibrated. Although some deviations were observed between model predictions and experimental values, it was shown that sulfates, total aqueous sulfide, free sulfides, methane, carbon dioxide and sulfide in the gas phase, gas flow, propionic and acetic acids, chemical oxygen demand (COD), and pH were accurately predicted during model validation. The model showed high (±10%) to medium (10%-30%) accuracy predictions with a mean absolute relative error ranging from 1% to 26%, and was able to predict failure of methanogenesis and sulfidogenesis when the sulfate loading rate increased. Therefore, the kinetic parameters and the model structure proposed in this work can be considered as valid for the sulfate reduction process in the anaerobic digestion of cane-molasses vinasse when sulfate and organic loading rates range from 0.36 to 1.57 kg [Formula: see text] m(-3) d(-1) and from 7.66 to 12 kg COD m(-3) d(-1), respectively.

Publishing year

2015

Language

English

Pages

42-54

Publication/Series

Water Research

Volume

71

Document type

Journal article

Publisher

Elsevier

Topic

  • Other Electrical Engineering, Electronic Engineering, Information Engineering

Keywords

  • Mathematical modeling
  • Simulation
  • Sulfate reduction
  • Vinasse

Status

Published

ISBN/ISSN/Other

  • ISSN: 1879-2448