The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

SOFC Cell Design Optimization Using the Finite Element Method Based CFD Approach

Author

Summary, in English

Fuel cells are hopeful for future energy systems, because they are energy efficient and able to use renewable fuels. A coupled computational fluid dynamics approach based on the finite element method, in three-dimensions, is used to illustrate a planar intermediate-temperature solid oxide fuel cell. Governing equations for momentum, gas-phase species, heat, electron and ion transport are implemented and coupled to kinetics describing electrochemical reactions. Three different cell designs are compared in a parametric study. The importance of the cathode support layer is revealed, because this layer significantly decreases the oxygen gas-phase resistance within the cathode (at positions under the interconnect ribs) in the direction normal to the cathode/electrolyte interface as well as the electron resistance inside the cathode (at positions under the air channel) in the same direction. It is concluded that wider and thinner gas channels enable a more compact design with only a slightly decreased cell current density (per cross-sectional electrode/electrolyte interface area), i.e. a considerably increased volumetric cell current can be achieved.

Department/s

Publishing year

2014

Language

English

Pages

177-188

Publication/Series

Fuel Cells

Volume

14

Issue

2

Document type

Journal article

Publisher

John Wiley & Sons Inc.

Topic

  • Energy Engineering

Status

Published

ISBN/ISSN/Other

  • ISSN: 1615-6854