The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

The effect of heat treatment of thylakoids on their ability to inhibit in vitro lipase/co-lipase activity.

Author

Summary, in English

Thylakoids has been shown to prolong lipolysis by the inhibition of lipase/co-lipase, which makes thylakoids suitable as a functional food ingredient with satiating properties. The components of thylakoids that provide its function as a lipolysis modulator are primarily photosystems I and II, which are structurally stabilised by chlorophyll. However, chlorophyll is known to be heat sensitive yet the enzymatic inhibiting capacity after heat treatment has not been previously studied. It was hypothesised that the retained function of thylakoids after heat treatment could be correlated to the degree of degradation. Heat treatment at either 60 °C, 75 °C or 90 °C for time interval ranging from 15 s to 120 min induced a color shift from bright green to olive brown which was attributed to degradation. The ability of heat-treated thylakoids to inhibit lipolysis in vitro was also reduced. A correlation between chlorophyll a degradation and the enzymatic inhibiting capacity could be established which opens possibilities to use a spectrophotometric method to quantify the ability of thylakoids to inhibit lipase/co-lipase in a more rapid and cost effective way to complement the pH-stat method used today. With the degradation pattern investigated, it is then possible to design a thermal treatment process to ensure a microbiological safe appetite-reducing product and at the same time minimize the loss of functionality.

Department/s

Publishing year

2014

Language

English

Pages

2157-2165

Publication/Series

Food & Function

Volume

5

Issue

9

Document type

Journal article

Publisher

Royal Society of Chemistry

Topic

  • Nutrition and Dietetics

Status

Published

Research group

  • Appetite Regulation

ISBN/ISSN/Other

  • ISSN: 2042-6496