The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Deeper Insight into Depth-Profiling of Aqueous Solutions Using Photoelectron Spectroscopy

Author

  • Olle Bjorneholm
  • Josephina Werner
  • Niklas Ottosson
  • Gunnar Öhrwall
  • Victor Ekholm
  • Bernd Winter
  • Isaak Unger
  • Johan Soderstrom

Summary, in English

X-ray photoelectron spectroscopy (XPS) is widely used to probe properties such as molecular stoichiometry, microscopic distributions relative to the surface by so-called depth-profiling, and molecular orientation. Such studies usually rely on the core-level photoionization cross sections being independent of molecular composition. The validity of this assumption has recently been questioned, as a number of gas-phase molecules have been shown to exhibit photon-energy-dependent nonstochiometric intensity oscillations arising from EXAFS-like modulations of the photoionization cross section. We have studied this phenomenon in trichloroethanol in both gas phase and dissolved in water. The gas-phase species exhibits pronounced intensity oscillations, similar to the ones observed for other gas-phase molecules. These oscillations are also observed for the dissolved species, implying that the effect has to be taken into account when performing depth-profiling experiments of solutions and other condensed matter systems. The similarity between the intensity oscillations for gas phase and dissolved species allows us to determine the photoelectron kinetic energy of maximum surface sensitivity, approximate to 100 eV, which lies in the range of pronounced intensity oscillations.

Department/s

Publishing year

2014

Language

English

Pages

29333-29339

Publication/Series

Journal of Physical Chemistry C

Volume

118

Issue

50

Document type

Journal article

Publisher

The American Chemical Society (ACS)

Topic

  • Natural Sciences
  • Physical Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-7447