The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Serotonin neuron-dependent and -independent reduction of dyskinesia by 5-HT(1A) and 5-HT(1B) receptor agonists in the rat Parkinson model.

Author

Summary, in English

5-HT(1) receptor agonists have been shown to reduce abnormal involuntary movements (AIMs) in the rat and monkey models of l-DOPA-induced dyskinesia. Different mechanisms have been proposed to underlie this effect. Activation of pre-synaptic 5-HT(1) receptors has been suggested to inhibit dysregulated release of dopamine from the serotonin terminals, and thus, abnormal activation of striatal dopamine receptors. Activation of post-synaptic 5-HT(1) receptors expressed in non-serotonergic neurons in different brain areas, by contrast, has been shown to result in decreased glutamate and GABA release, which may also contribute to the antidyskinetic effect. To unveil the relative contribution of these mechanisms, we have investigated the effect of increasing doses of 5-HT(1A) and 5-HT(1B) receptor agonists on AIMs induced by either l-DOPA or apomorphine. In contrast to l-DOPA-induced AIMs, which were dampened already at low doses of 5-HT(1) agonists, reduction of apomorphine-induced AIMs required higher doses. Removal of the serotonin innervation suppressed l-DOPA-induced AIMs, but neither affected apomorphine-induced AIMs nor the inhibiting effect of 5-HT(1) agonists on AIMs induced by the direct dopamine agonist, suggesting that such effect is independent on activation of pre-synaptic 5-HT(1) receptors.

Publishing year

2009

Language

English

Pages

298-307

Publication/Series

Experimental Neurology

Volume

219

Issue

1

Document type

Journal article

Publisher

Elsevier

Topic

  • Neurology

Status

Published

Research group

  • Neurobiology
  • Brain Repair and Imaging in Neural Systems (BRAINS)

ISBN/ISSN/Other

  • ISSN: 0014-4886