The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

On the Combustion Characteristics of Closely-Coupled LD Diesel Injection Strategies

Author

  • Michael Denny

Summary, in English

Multiple-pilot injection strategies with both moderate and short time separations (dwells) are investigated in a light-duty diesel engine. Both conventional and optical engine experiments are performed. By implementing triple-pilot injection strategies with short dwells between the individual injections, combustion noise can be significantly reduced. The sound pressure level was reduced by nearly 4 dB compared to a conventional double-pilot injection strategy. This is significant since every 3 dB is a doubling of sound power. Reducing the combustion noise allowed for combustion to be phased to its peak efficiency point, improving gross efficiency by nearly 4%.

A new metric, the ratio of reduced heat release (RRHR) was developed in order to analyze the heat release rate (HRR). This metric quantifies the magnitude of the undulations in the HRR and explains their influence on the combustion noise. It can explain the relative strength of frequency content in the combustion noise, indicate how the HRR should be modified to reduce combustion noise, and predict the total noise level at a specific load-speed point for different injection strategies.

The combustion processes of conventional and closely-coupled strategies were studied in an optical engine. It was discovered that contact ignition stabilizes the combustion of subsequent fuel injected into prevailing combustion regions. Where a physical interface between the fuel and combustion region does not occur, that region has a significantly delayed ignition. Closely-coupling injections can lead to lower stability since the injections arrive sooner, at less developed stages of combustion. In this interface, hot combustion products are extinguished and replaced with cool ones which can add to the undulation in the HRR. In order to minimize its effects on combustion noise, this extinguishing phenomenon should be limited.

A balance of mixture dilution, injection pressure, short injection separations, and injection rate shaping are utilized to create a quadruple-pilot injection strategy creating a near linear HRR progression and very low noise level.

Department/s

Publishing year

2019-03-28

Language

English

Document type

Dissertation

Publisher

Department of Energy Sciences, Lund University

Topic

  • Mechanical Engineering

Keywords

  • Diesel combustion
  • Closely-Coupled Pilot
  • Closely-Spaced Pilot
  • Combustion Noise
  • Heat release rate shaping
  • Multiple-injection strategy
  • Formaldehyde PLIF

Status

Published

ISBN/ISSN/Other

  • ISSN: 0282-1990
  • ISBN: 978-91-7895-065-2
  • ISBN: 978-91-7895-064-5

Defence date

26 April 2019

Defence time

10:15

Defence place

Lecture Hall M:B, M-Building, Ole Römers väg 1, Lund University, Faculty of Engineering LTH

Opponent

  • Stephen Busch (Doctor)