The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

High-throughput method for the analysis of ethylenethiourea with direct injection of hydrolysed urine using online on-column extraction liquid chromatography and triple quadrupole mass spectrometry.

Author

Summary, in English

Ethylenethiourea (ETU) is of major toxicological concern, since in experimental animal studies, ETU has shown a large spectrum of adverse effects. High occupational exposure can be found among agricultural workers or during manufacturing of ethylenbisdithiocarbamates (EBDC). For the general public, sources of environmental exposure may be residues of ETU in commercial products, food and beverages. For the determination of ETU in human urine we present a high-throughput online on-column extraction liquid chromatography triple quadrupole mass spectrometry method using direct injection of hydrolysed urine samples. This method is simple, user- and environmentally friendly and all sample preparation is performed in 96-well plates. A labelled ETU internal standard was used for quantification. The method showed a good sensitivity with a limit of quantification (LOQ) of 0.5ng ETU/mL urine and the calibration curve was linear in the range 0.25-200ng ETU/mL urine. The within-run, between-run and between-batch precision was between 6% and 13%. Alkaline hydrolysis considerably increased the levels of ETU indicating a potential conjugate. The method was applied in an experimental dermal exposure study in humans, with sample concentrations ranging from 0.4 to 5.0ng ETU/mL urine. The excretion in urine was 10% of the applied dose. The elimination profile seemed to differ between the two individuals. The results show an estimated half-life of ETU between 34 and 72h. Although the experiment is limited to two individuals, the data provide valuable and new information regarding the toxicokinetics of ETU after dermal exposure.

Publishing year

2013

Language

English

Pages

53-59

Publication/Series

Journal of Chromatography. B

Volume

934

Issue

Jul,5

Document type

Journal article

Publisher

Elsevier

Topic

  • Environmental Health and Occupational Health

Status

Published

ISBN/ISSN/Other

  • ISSN: 1873-376X