The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Glycolipid depletion in antimicrobial therapy

Author

Summary, in English

Mucosal pathogens target sites of infection through specific adherence to host glycoconjugate receptors. As a consequence, depletion of such receptors from the cell surface may be expected to inhibit attachment, impair bacterial colonization and reduce the activation of mucosal inflammation. We have used the glucose analogue and glycosphingolipid (GSL) biosynthesis inhibitor N-butyldeoxynojirimycin (NB-DNJ) to deplete human uroepithelial cells and the murine urinary tract mucosa of receptors for P-fimbriated Escherichia coli. NB-DNJ blocks the ceramide-specific glucosyltransferase, which catalyses the formation of glucosyl ceramide (GlcCer), the precursor for GSLs. The inhibitor was shown to decrease the GSL content in a dose-dependent way, and depletion markedly inhibited P-fimbriated bacterial attachment in vitro. NB-DNJ-fed C3H/HeN mice were depleted of GSLs in vivo and showed reduced susceptibility to experimental urinary tract infection with P-fimbriated E. coli. The mucosal inflammatory response was impaired, as shown by reduced chemokine secretion and lower neutrophil recruitment, and the bacteria colonized the urinary tract less efficiently than in normal mice. These results confirmed the role of P fimbriae-mediated adherence for colonization and inflammation and point to an interesting alternative to antibiotic treatment for urinary tract infection.

Publishing year

2003

Language

English

Pages

453-461

Publication/Series

Molecular Microbiology

Volume

47

Issue

2

Document type

Journal article

Publisher

Wiley-Blackwell

Topic

  • Microbiology in the medical area

Status

Published

ISBN/ISSN/Other

  • ISSN: 1365-2958