The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Inhibition of calcium entry preserves contractility of arterial smooth muscle in culture

Author

Summary, in English

The addition of the growth stimulator fetal calf serum (FCS, 10%) to rings of rat tail artery causes an increase in [Ca2+]i, accompanied by contraction. This response was inhibited by the calcium entry blocker verapamil (1 microM). To investigate the effect of Ca2+ entry blockade on growth and contractility, rings of rat tail artery were cultured for 4 days in medium with or without FCS and then mounted for tension registration and stimulated with noradrenaline (NA) or high-K+ solution. In cultured rings growth was quantitated by [3H]-thymidine incorporation and increase in protein contents. FCS in the medium stimulated DNA synthesis by about 2-fold and increased protein contents by about 70%. The growth-stimulated cultured rings developed less force than freshly prepared rings (2.2 +/- 0.3 vs. 8.3 +/- 1.0 mN/mm). The addition of 1 microM verapamil to the medium during culture increased maximal NA-evoked force to 5.0 +/- 0.4 mN/mm but had no effect on the increases in DNA synthesis and protein contents. Force developed by growth-arrested rings, cultured in the absence of FCS, was not different from that of freshly prepared rings (7.2 +/- 0.6 mM/mm). Verapamil did not affect maximal force in these rings. Similar responses were seen when contraction was elicited by high-K+ solution. We conclude that verapamil, present during culture, preserves contractility of arterial smooth muscle, and that this effect is not parallel to inhibition of growth.

Department/s

Publishing year

1997

Language

English

Pages

103-108

Publication/Series

Journal of Vascular Research

Volume

34

Issue

2

Document type

Journal article

Publisher

Karger

Topic

  • Cardiac and Cardiovascular Systems

Status

Published

Research group

  • Islet cell physiology
  • Vascular Physiology

ISBN/ISSN/Other

  • ISSN: 1423-0135