The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Narrow-Front Loop Migration in a Population of the Common Cuckoo Cuculus canorus, as Revealed by Satellite Telemetry.

Author

  • Mikkel Willemoes
  • Roine Strandberg
  • Raymond Klaassen
  • Anders P Tøttrup
  • Yannis Vardanis
  • Paul W Howey
  • Kasper Thorup
  • Martin Wikelski
  • Thomas Alerstam

Summary, in English

Narrow migration corridors known in diurnal, social migrants such as raptors, storks and geese are thought to be caused by topographical leading line effects in combination with learning detailed routes across generations. Here, we document narrow-front migration in a nocturnal, solitary migrant, the common cuckoo Cuculus canorus, using satellite telemetry. We tracked the migration of adult cuckoos from the breeding grounds in southern Scandinavia (n = 8), to wintering sites in south-western Central Africa (n = 6) and back to the breeding grounds (n = 3). Migration patterns were very complex; in addition to the breeding and wintering sites, six different stopover sites were identified during the 16,000 km annual route that formed a large-scale clockwise loop. Despite this complexity, individuals showed surprisingly similar migration patterns, with very little variation between routes. We compared observed tracks with simulated routes based on vector orientation (with and without effects of barriers on orientation and survival). Observed distances between routes were often significantly smaller than expected if the routes were established on the basis of an innate vector orientation programme. Average distance between individuals in eastern Sahel after having migrated more than 5,000 km for example, was merely 164 km. This implies that more sophisticated inherent guiding mechanisms, possibly involving elements of intermediate goal area navigation or more elaborate external cues, are necessary to explain the complex narrow-front migration pattern observed for the cuckoos in this study.

Publishing year

2014

Language

English

Publication/Series

PLoS ONE

Volume

9

Issue

1

Document type

Journal article

Publisher

Public Library of Science (PLoS)

Topic

  • Biological Sciences

Status

Published

ISBN/ISSN/Other

  • ISSN: 1932-6203