The browser you are using is not supported by this website. All versions of Internet Explorer are no longer supported, either by us or Microsoft (read more here: https://www.microsoft.com/en-us/microsoft-365/windows/end-of-ie-support).

Please use a modern browser to fully experience our website, such as the newest versions of Edge, Chrome, Firefox or Safari etc.

Short-Term Exercise Training Does Not Stimulate Skeletal Muscle ATP Synthesis in Relatives of Humans With Type 2 Diabetes

Author

  • Gertrud Kacerovsky-Bielesz
  • Marek Chmelik
  • Charlotte Ling
  • Rochus Pokan
  • Julia Szendroedi
  • Michaela Farukuoye
  • Michaela Kacerovsky
  • Albrecht I. Schmid
  • Stephan Gruber
  • Michael Wolzt
  • Ewald Moser
  • Giovanni Pacini
  • Gerhard Smekal
  • Leif Groop
  • Michael Roden

Summary, in English

OBJECTIVE-We tested the hypothesis that short-term exercise training improves hereditary insulin resistance by stimulating ATP synthesis and investigated associations With gene polymorphisms. RESEARCH DESIGN AND METHODS-We studied 24 nono-bese first-degree relatives of type 2 diabetic patients and 12 control subjects at rest, and 48 h after three bouts of exercise. In addition to measurements of oxygen uptake and insulin sensitivity (oral glucose tolerance test), ectopic lipids and mitochondrial ATP synthesis were assessed using H-1 and P-31 magnetic resonance spectroscopy, respectively. They were genotyped for polymorphisms in genes regulating mitochondrial function, PPARGC1A (rs8192678) and NDUFB6 (rs540467). RESULTS-Relatives had slightly lower (P = 0.012) insulin sensitivity than control subjects. In control subjects, ATP synthase flux rose by 18% (P = 0.0001), being 23% higher (P = 0.002) than that in relatives after exercise training. Relatives responding to exercise training with increased ATP synthesis (+19%, P = 0.009) showed improved insulin sensitivity (P = 0.009) compared with those whose insulin sensitivity did not improve. A polymorphism in the NDUFB6 gene from respiratory chain complex I related to ATP synthesis (P = 0.02) and insulin Sensitivity response to exercise training (P = 0.05). ATP synthase flux correlated with O-2 uptake and insulin sensitivity. CONCLUSIONS-The ability of short-term exercise to stimulate ATP production distinguished individuals with improved insulin sensitivity from those whose insulin sensitivity did not improve. lit addition, the NDUFB6 gene polymorphism appeared to modulate this adaptation. This finding suggests that genes involved in mitochondrial function contribute to the response of ATP synthesis to exercise training. Diabetes 58:1333-1341, 2009

Publishing year

2009

Language

English

Pages

1333-1341

Publication/Series

Diabetes

Volume

58

Issue

6

Document type

Journal article

Publisher

American Diabetes Association Inc.

Topic

  • Endocrinology and Diabetes

Status

Published

Research group

  • Genomics, Diabetes and Endocrinology

ISBN/ISSN/Other

  • ISSN: 1939-327X